Студент Суходоева Анна Евгеньевна

Группа <u>417</u> Вариант <u>114</u>

- 1. Построение по правоинвариантному отношению эквивалентности конечного индекса конечного автомата, который задает данное отношение эквивалентности.
- 2. Преобразование нагруженного дерева конечного веса в диаграмму Мура.
- 3. Общая идея доказательства замкнутости класса вычислимых функций относительно операции примитивной рекурсии. Понятие дорожки и ее роль в доказательстве.
- 4. Задача 2-ВЫПОЛНИМОСТЬ. Резольвента и ее роль в доказательстве полиномиальной разрешимости задачи 2-ВЫП.
- 5. Определение функции Шеннона $L^{\mathbb{C}}(Q(n))$, $n=1,2,\ldots$, для специального класса ФАЛ (операторов) Q. Невырожденные классы ФАЛ (операторов) и формулировка утверждения о нижней мощностной оценке связанных с ними функций Шеннона, идея его доказательства
- 6. Формулировка теоремы Храпченко с расшифровкой всех связанных с ней определений и обозначений. Основные этапы доказательства данной теоремы и используемые при этом конструкции.
- 7. Построить диаграмму Мура для автомата в алфавите $\{0,1\}$, который допускает множество всех слов, оканчивающихся словом 110.
- 8. Доказать частичную рекурсивность функции

$$f(x,y) = \frac{2}{x+y+1}.$$

9. Установить асимптотическое поведение функции Шеннона $L^{\rm C}(Q(n))$ для класса ФАЛ Q, такого, что любая ФАЛ из Q(n), где $n\geqslant 4$, симметрична как по переменным $x_1,\,x_2$, так и по переменным $x_{n-1},\,x_n$.